Investigating thermal refuge use by Willamette River coastal cutthroat trout

Photo by Jonathan Armstrong

Hannah Barrett, OSU Dept of Fisheries and Wildlife

Year					
Month				5	
Week					
Day					
Hour					
	Microhabitat	Channel Unit	Reach	Segment	Network

- Mainstem Willamette River temperatures exceed 20°C during summer
 - Stressful conditions

Floodplain thermal refugia: cold water alcoves

- Seasonally warm areas can support fish populations when they have thermal refuges.
- Fine scale features that stay cool during summer and can allow fish to survive over summer maximum temperatures/ thermal stress.

Floodplain thermal refugia: cold water alcoves

- Seasonally warm areas can support fish populations when they have thermal refuges.
- Fine scale features that stay cool during summer and can allow fish to survive over summer maximum temperatures/ thermal stress.

Floodplain thermal refugia: cold water alcoves

- Seasonally warm areas can support fish populations when they have thermal refuges.
- Fine scale features that stay cool during summer and can allow fish to survive over summer maximum temperatures/ thermal stress.

Our study hopes inform

- Timing of movement onto refuge, feeding and growth
- Oxygen-Temperature tradeoff
- How refuges combine with non-refuge habitats to support fish
 - Within a season as well as seasonally synergy between habitats

Diet and condition

- Different foodweb smaller ration sizes comprised of less energetic food resources.
- Fish in mainstem river may have higher metabolic demands but also eat more energetic prey resources
- Overall condition of fish in CWA habitats appear to be similar to those who remain in the mainstem

Temperature oxygen tradeoff

Temperature oxygen tradeoff

Temperature oxygen tradeoff

Radio Telemetry

- ~100 cutthroat Albany to McKenzie river junction tagged early May with motion/temperature/mortality transmitting tags
- Mobile telemetry 1 x week May-Sept/Oct

Radio Telemetry

- Understanding how configuration of temperature matters – to what extent do fish move across landscape, and what is the comparison between fish using small cool refuges (alcoves) to large cool areas (McKenzie), or no refuge use (mainstem Willamette).
- Timing and extent of refuge use

#willamettecutthroat

Armstrong LabJennifer AllenStan GregoryDean FinnertyRandy Wildman

Field assistants:Patrick CarilliNickNathan EdwardsAlexTobias FelbeckDaveAleah DewLoga

Nick Sotiropoulos rds Alex Kaste k Dave Roon Logan Breshears

Confederated Tribes of **Grand Ronde**

