Where, When, and How Much Salmonid Habitat is Available on the Willamette River?

James White, Rose Wallick, Laurel Stratton, Brandon Overstreet, Gabriel Gordon

January 15, 2020

Many people involved and contributing to study

<u>USGS ORWSC</u>: Stewart Rounds, Adam Stonewall, Greg Lind, Mackenzie Keith, Krista Jones <u>USACE</u>: Rich Piaskowski, Jacob Macdonald, Greg Taylor, Jeff Balantine, Norman Buccola, Paul Sclafani <u>Oregon State University</u>: Jim Peterson, Jessica Pease, Tyrell DeWeber <u>USGS WFRC</u>: Toby Kock, Russ Perry, Gabriel Hansen <u>NOAA Fisherie</u>s: Anne Mullan, Diana Dishman <u>ODFW</u>: Luke Whitman, Brian Bangs

Funding provided by US Army Corps of Engineers

Overview

- Willamette River
 - Geomorphology, hydrology, and flow management
- Quantifying habitat:
 - Flow-management decisions
 - What is the relationship between streamflow and juvenile salmonid habitat?
 - Restoration planning and prioritization
 - Where and when is habitat limiting?
 - Status and trends of habitat over time
 - What is the trajectory of habitat availability?

Willamette River – four rivers in one valley

Willamette River – four rivers in one valley

Long Profile of Upper Willamette

Long Profile of Middle Willamette

Bar Distribution 2016

≥USGS

Change in gravel bars 1895-2016

~85% reduction in bare bars in Willamette River above Newberg

≊USGS

Willamette River Peak Flows 1895 - 2019

≥USGS

Willamette River Annual Minimum Flows 1895 - 2019

USGS

Willamette River Annual Minimum Flows 1895 - 2019

The Need to Quantify Habitat

- Flow-management decisions
 - What is relationship between streamflow and juvenile salmonid habitat?

Where and when is habitat limiting?

Status and trends of habitat over,
What is the trajectory of habitat

Building blocks of hydraulic model

Building blocks of hydraulic model

Hydraulic model outputs

Hydraulic model outputs

Hydraulic Model Reaches

Defining "useable" rearing habitat

Fish habitat = f (depth, velocity, cover, bed- slope, temperature, predation, food, DO....)

Defining "useable" rearing habitat

Fish habitat = f(depth, velocity, cover, slope, temperature, predation, DO, food...)

Species	Size Class	Criteria	Narrow	Median	Broad
	Pre-smolt (>60mm)	Depth (ft)	0.15-2.25	0.15-3.5	0.15-Inf
salmon		Velocity (ft/s)	0-1.25	0-1.63	0-3
		Bed Slope	<0.4	<0.55	Any
Chinook salmon	Fry (<60mm)	Depth (ft)	0.15-2.0	0.15-3.5	0.15-5
		Velocity (ft/s)	0-0.5	0-1.25	0-1.5
		Bed Slope	<0.4	<0.55	Any
Steelhead	Pre-smolt (>60mm)	Depth (ft)	0.15-1	0.15-1	0.15-Inf
		Velocity (ft/s)	0-1.75	0-3.25	0-3.5
		Bed Slope	NA	NA	NA
Steelhead	Fry (<60mm)	Depth (ft)	0.25-1.25	0.25-2	0.25-5
		Velocity (ft/s)	0-0.5	0-1.25	0-2
			NLA	N L A	N L A

Habitat criteria source: Peterson and others, 2019

Photo: NOAA

Photo: ODFW

Defining "useable" rearing habitat

Fish habitat = f (depth, velocity, cover, bed- slope, temperature, predation, food, DO....)

Habitat criteria source: Peterson and others, 2019

Photo: ODFW

Habitat Model Results

Chinook Habitat by Reach

Habitat Model Results

The Need to Quantify Habitat

- Flow-management decisions
 - What is relationship between streamflow and juvenile salmonid habitat?

Key findings:

- Greatest amount of habitat is at high flows
- Habitat availability varies but is largely driven by geomorphic setting and flows
 - Reaches with more confined and single threaded channel:
 - At moderate flows, habitat area decreases with increasing flow
 - At high flows, habitat area increases with flow
 - Reaches with less confined and multi-threaded channels:
 - For all flows, habitat area generally increases with flow

The Need to Quantify Habitat

- Flow-management decisions
 What is relationship between streamflow and juvenile salmonid habitat?
- Where and when is habitat limiting?
- Status and trends of habitat over time
 - What is the trajectory of habitat?
 - Are we making progress towards restoration goals?

≊US

to revision

Preliminary Results - subject to revision

Temperature at Albany Gage (14174000)

		Water temperature, °C		
Species	Life-stage	Narrow	Median	Broad
Spring Chinook salmon	Adult migration/holding	8-12	3-17	3-20
	Spawning	6-13	4-14	4–16
	Incubation	6–10	4-12	2-14
	Rearing	10-15	4–19	4-22
Literature sources - McCullough 1999; U.S. EPA 2003; Carter 2005, 2008; Kubo 2017				

USGS Te

Temperature model results from Laurel Stratton and Stewart Rounds

The Need to Quantify Habitat

- Flow-management decisions
 What is relationship between streamflow and juvenile salmonid habitat?
- Where and when is habitat limiting?
- Key findings:
- Spatial patterns of habitat availability are highly variable:
 - Short river segments can account for much of reach-aggregated habitat area
- Reach-scale patterns of habitat limitations vary seasonally
 - Upper Willamette has more habitat area in winter but less in summer, compared to Middle Willamette

The Need to Quantify Habitat

- Flow-management decisions
 What is relationship between streamflow and juvenile salmonid habitat?
- Where and when is habitat limiting?
- Status and trends of habitat availability over time
 - What is the trajectory of habitat availability?
 - Are we making progress towards restoration goals?

How can we affordably track changes in habitat?

Where and how to leverage remote sensing and machine learning?

The Need to Quantify Habitat

- Flow-management decisions
 What is relationship between streamflow and juvenile salmonid habitat?
- Where and when is habitat limiting?
- Status and trends of habitat availability over time
 - What is the trajectory of habitat availability?
 - Are we making progress towards restoration goals?

Key findings:

Habitat variation can likely be explained in large part by river and geomorphic characteristics

Tying it together

A States

USG

Take home points

- Least amount of habitat exists at low to medium flows throughout the Willamette River
- Higher flows has most habitat, but is inundated a few weeks a year
 - Highest flows (e.g. 1+ year RI) may be inundated a few days a year or less
- Habitat and its response to streamflow varies spatially
 - Large-scale trends explained by geomorphology
 - At smaller scales, considerable variation exists
 - Model results highlight areas that can be preserved for high quality habitat, or identify reaches lacking in habitat
- Where summer habitat exists, it is likely to be warm and potentially unusable
 - Eventual goal to combine results with cold-water refugia work
- Habitat results are a snapshot in time
 - Detailed results will change over time, but trends likely to remain the same
 - Upper Willamette likely to change faster than lower Willamette
 - Detailed habitat modeling impractical to conduct frequently, but coarser quantification possible with aerial photos
- Larger life-cycling model work may help evaluate fish-response to increased habitat
 - This would be at reach (30-50km) scale

Questions from us

Most work has been done to better understand how flow-management affects habitat

Results provide insights into river dynamics and distributions of habitat

How can this be more useful for:

- Restoration planning?
 - Hydraulic model availability?
 - Identifying/prioritizing reaches?
 - Inundation extents at various streamflows
- Restoration monitoring?
 - Area habitat created?
 - Days inundated?
- What other information would be helpful?

Questions

jameswhite@usgs.gov

ZUSGS

EXTRA SLIDES

Willamette River Flow Objectives

Source: Table 2-8 from Biological Opinion for USACE's Willamette Valley Project, NOAA Fisheries, 2008

Time Period	7-Day Moving Average ¹ Minimum Flow at Salem (cfs)	Instantaneous Minimum Flow at Salem (cfs)	Minimum Flow at Albany (cfs) ²
April 1 - 30	17,800	14,300	
May 1 - 31	15,000	12,000	
June 1 - 15	13,000	10,500	4,500
June 16 - 30	8,700	7,000	4,500
July 1 - 31		6,000	4,500
August 1 - 15		6,000	5,000
August 16 - 31		6,500	5,000
September 1 - 30		7,000	5,000
October 1 - 31		7,000	5,000

≊USC

Building blocks of hydraulic model

Change in gravel bars 1895-2008

~85% reduction in bare bars in Willamette River above Newberg

1895 bars mapped from USACE navigational surveys; 2008 bars mapped from LiDAR. Provisional data, subject to revision.

Alternative approaches to bathymetry

What about places where topo-bathymetric lidar isn't available?

Alternative approaches to bathymetry

Example of preliminary image (RBG) derived bathymetry on North Santiam River

Bathymetry is derived from spectral and hydraulic analysis of publicly available imagery (NAIP)

Modeling other species and interactions

- Depth: 0.5 m 2.0 m
- Velocity: <0.1 m/s
- Reaches with upstream connections in winter

Habitat criteria provided by Brian Bangs, ODFW

Upper Willamette River near Green Island

Potential tools to support flow management and habitat restoration Example Shiny Application where user can define habitat criteria and view maps of habitat availability

Anticipated products and timelines

Bathymetry

- Sonar point cloud published <u>www.sciencebase.gov</u> → search "Willamette River Bathymetry"...... or just email me
- Fused lidar/sonar DEM (anticipated release: Spring, 2020)

Hydraulic models

- Calibration continuing through Fall 2019
 - Anticipated release: Spring, 2020

Habitat models

 Preliminary results included in growth, survival, and movement models under development by OSU – expected release Spring 2020

Tributary bathymetry and models

Under development (anticipated release: Summer/Fall 2020)

Flow-management and analysis tools

 Under development – soliciting input from broader community – Summer 2020?

Hydraulic model outputs

Percentile	Salem	Albany	Harrisburg
(%)		(ft ³ /s)	-
1	5,517	3,875	3,457
5	6,369	4,427	4,010
10	6,811	4,777	4,495
90	49,031	27,951	21,374
95	64,610	36,995	28,570
99	93,355	54,281	41,470

Source: Peterson and others, 2018

Fusing lidar and sonar data

Quantifying Uncertainty in Model Results

Measured vs Modeled Water Surface Elevation Eugene - Harrisburg Reach

Quantifying Uncertainty in Model Results

